Data-driven calibration of the fundamental diagram for real-time traffic simulation models

Master's Thesis of Ahmet Cagri Tekin

Mentoring:
M.Sc. Sasan Amini
M.Sc. Gabriel Tilg

External Mentoring:
Dr. Daniele Tiddi (PTV Group)

Why?
Real-time traffic models rely on dynamic traffic assignment
Fundamental diagrams (FD) are used in dynamic traffic assignment procedure
Links are represented by FDs
FDs were manually fitted to data
Spatio-temporal characteristics were not considered

Research goals:
Developing an automated fundamental diagram fitting algorithm
Clustering similar fundamental diagrams

Method	Optimization Problem	FD Form
M1 | Dervisoglu (w/ \(V_{\text{init}} = 40 \text{ km/h} \)) | Triangular |
M2 | Extended Dervisoglu (w/o \(V_{\text{init}} \)) | |
M3 | Flow-density costs | Gentile Polynomial |
M4 | Speed-flow costs | |
M5 | Flow-density costs | Gentile Capacity-Drop |

Conclusion
- Method M4 overperform the others in u-q relation
- Method M5 cannot support flat capacity range
- Method M5 should be preferred over M3 when data does not show trapezoidal trend
- Nonuniform data causes biased estimation
- Data weighting can be applied
- Influence of loss functions should be further investigated